Benjamin Walter Assignment Confidence_Intervals due 04/22/2019 at 08:00pm EEST

cve303

1. (1 point) METUNCC/Statistics/CI_z.pg

For the problems below, you may either enter a numeric answer (accurate to 3 significant digits), or the R code which generates the answer.

(Your answer will be checked by R.)

A random variable is sampled 42 times yielding sample mean $\bar{x} = 37$ and sample standard deviation s = 6.6.

What is α for the 93% confidence interval?

 $\alpha = _$

What is $z_{\alpha/2}$ for the 93% confidence interval?

 $z_{\alpha/2} =$ _____

Give the 93% confidence interval.

You may use the embedded R window below to check your code and perform computations.

Embedded R window.

Recall that if $Z \sim \text{Normal}(0,1)$ then the critical values of Z are computed in R by the command: $z_{\alpha} = -\text{qnorm}(\alpha)$

For example

-qnorm(.05) computes the critical value $z_{5\%}$ where $P(Z > z_{5\%}) == 5\%$.

2. (1 point) METUNCC/Statistics/CI_t.pg

For the problems below, you may either enter a numeric answer (accurate to 3 significant digits), or the R code which generates the answer.

(Your answer will be checked by R.)

A normal random variable is sampled 15 times yielding sample mean $\bar{x} = 33$ and sample standard deviation s = 9.4.

What is α for the 97% confidence interval?

 $\alpha = _$

How many degrees of freedom are there for the *t* distribution computation?

degrees of freedom = ____

What is $t_{\alpha/2}$ for the 97% confidence interval?

 $t_{\alpha/2} = \underline{\qquad}$ Give the 97% confidence interval. (______, ____)

You may use the embedded R window below to check your code and perform computations.

Embedded R window.

Recall that if $T \sim t(n)$ (i.e. *t*-distribution with *n* degrees of freedom) then the critical values of *T* are computed in R by the command:

 $t_{\alpha} = -qt(\alpha, n)$

For example

-qt(.05, 9) computes the critical value $t_{5\%}$ where $P(T > t_{5\%}) = 5\%$, and T has 9 degrees of freedom.

3. (1 point) METUNCC/Statistics/CI_p.pg

For the problems below, you may either enter a numeric answer, or the R code which generates the answer. (Your answer will be checked by R.)

Theory: Suppose that $X \sim \text{Binomial}(n, p)$. If *n* is big and $p, q \ge \frac{10}{n}$ then *X* and $\hat{P} = \frac{X}{n}$ are approximately normal: $X \approx \text{Normal}(___,___)$ $\hat{P} \approx \text{Normal}(___,___)$

Application: A sample of size 39 is drawn from a population, finding 21 occurrences. What is the sample proportion?

 $\hat{p} = _$

What is the standard error of the sample proportion?

 $\sigma_{\hat{p}} =$ _____Give the 90% confidence interval for the population proportion *p*.

 $\left(\frac{1}{1} \right)$ If the total population is 85000, then what is the 90% confidence interval for the total number of occurrences?

You may use the embedded R window below to check your code and perform computations.

Embedded R window.

4. (1 point) METUNCC/Statistics/CI_x.pg

______, _____

For the problems below, you may either enter a numeric answer (accurate to 3 significant digits), or the R code which generates the answer.

(Your answer will be checked by R.)

A normal random variable is sampled 25 times yielding sample standard deviation s = 6. Give the 96% confidence interval for σ .

You may use the embedded R window below to check your code and perform computations.

Embedded R window.

Recall that if $X \sim \chi^2(n)$ ("Chi-squared with *n* degrees of freedom") then the critical values of *X* are computed in R by the command:

 $\chi_{\alpha} = \operatorname{qchisq}(\alpha, n)$ For example $\operatorname{qchisq}(.05, 9)$ computes the critical value $\chi_{5\%}$ where $P(X < \chi_{5\%}) = 5\%$, and *X* has 9 degrees of freedom.

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America